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The Rules 
This particular game (let’s call it a reading game) requires N >= 2 players and M >= 6 buckets, and is played in rounds. At 

the start of the k-th round, a dealer secretly provides each player with m random buckets i1 , … , im ,  where i is the player 

and m is a fixed and previously agreed upon number in the range 2 <= m << M (default: 3).  

Next, all players simultaneously take their turns to select 1 (one) bucket out of their respective m-sets: 

sk
i = S(i1 , … , im) (1) 

 where sk
i  is the bucket selected by the i-th player. 

The dealer then discreetly collects all private selections, sums them up by individual buckets, and 

ak
j

=  ∑(sk
i == j)

N

i =1

?  1 ∶ 0 (2) 

updates per-bucket scorecards, by feeding ak
j

 tallies into the dual-function formula 3: 

{
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j
)
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j
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 (3) 

for each j-th bucket in the range [1, M].  

The U() function in 3 reflects a measure of bucket utilization by the players, while the F() function simply translates this 

utilization into player-visible scores. Both functions have a number of popular realizations – for instance, when the 

buckets are in fact leaky buckets, 3 converts into the familiar:  
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j
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j
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j
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j
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 (3”) 

 where svc_rate  is a constant service rate – the number of selections that each bucket can “leak” (i.e., process) 

within one round of the game. Finally, at the end of each round players are rewarded (or penalized, depending on the 

sign and nature of the function F):  

rewardk
i =  f

k

sk
i

 
(4) 

The goal of each i-th player is to maximize the accumulated rewards (or, minimize the accrued penalties):  

max  𝐸𝑘 (rewardk
i ) (5) 

 where 𝐸 is an expected value of the player’s rewards over their respective distribution. 

Expected value is often approximated as a moving (cumulative, weighted, exponential, etc.) average.   

https://en.wikipedia.org/wiki/Leaky_bucket#As_a_queue
https://en.wikipedia.org/wiki/Expected_value
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The 3 and, especially, the 3” above illustrate one common trait shared by all reading games: a smaller per-bucket tally 

ak
j

 produces a better outcome and, thus, a better aggregated result 5.  

In other words, to win the player must devise a function S(i1 , … , im) that would minimize inter-player conflicts, by 

picking the least utilized bucket out of the m-sets handed out by the dealer.  

The problem is, the other m-sets as well as the choices made by other players are never known. There may also be a 

little (or limited) information in re the previous (historic) bucket utilizations uk
j

 that may be affecting the 

penalties/rewards 3 and 4. 

CH Cluster 
All theory is gray 

And green the golden tree of life  

    Goethe’s “Faust” 

Enough with the abstractions! Suppose, we have a very basic consistently-hashing (CH) cluster that runs a 100% read 

workload and serves same-size data chunks to concurrent readers. More exactly: 

1) Each data chunk that is being read is stored in m distributed copies (replication factor m equals 3 by default) 

2) The system time is quantized: an indivisible quantum of time is called an epoch 

3) The storage initiators do the reading: at the start of each epoch initiator decides which of the m remote 

consistently-hashed copies to read 

4) The storage targets do the storing: at the end of each epoch, each target computes its current latency to 

execute the newly arrived reads 

5) The target’s latency is based on the current and previous utilizations (of this target). In other words, the latency 

is based either on the entire history of target selections, or (a configured) part of thereof 

6) Networking is instantaneous: target latency >> transmission time (which therefore can be safely ignored) 

7) Last but not the least: the initiators do not disclose their target selections to other initiators (there’s simply no 

time for it anyway). 

The initiators are free to execute arbitrary policies to compute the optimal target selections: 

sk
i = S(i1 , … , im) (1) 

The objective: minimum read latency.  

Notice that even though the description 1 – 7 is totally devoid of all equations, this is the same reading game in disguise, 

except that: 

• players are called initiators 

• buckets are called targets 

• number m is a replication factor 

• round of the game – an epoch 

• function F() – read latency  

 

For additional background on the initiator and target roles and functionality see, for instance, The Better 

Protocol. 

https://en.wikipedia.org/wiki/Consistent_hashing
https://storagetarget.com/2016/05/17/the-better-protocol-part-i/
https://storagetarget.com/2016/05/17/the-better-protocol-part-i/
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When ignorance is bliss 
Part of the challenge of playing the reading game is – not knowing. There is in fact, a known  unknown spectrum that 

can be placed between two opposite extremes: 

• initiators that know almost nothing about target selections/utilizations (except maybe their own past 

choices), and 

• initiators that know almost everything (except the most recent selections by other initiators) 

Since there is a spectrum, there is a point X that properly divides it: 

` 

 

 

 

On the picture, the X divider would conceivably move to the right if the utilization statistics are somehow made available 

to whomever is interested (e.g., storage initiators) at the smallest possible delay, ideally – in no time at all. It would 

move to the left with increasing ratio between, say, service rate on one hand, and intra-cluster roundtrip time, on the 

other. Exacerbating, in turn, the risk (the curse!) of overfitting, whereby a carefully crafted model gets easily swayed by 

the quickly aging past...  

For in-depth introduction into the (quote) “challenges of decision making under uncertainty from a 

computational perspective,” please refer to Decision Making Under Uncertainty (a book and a namesake 

Stanford course).  

For me, part of the beauty of modeling reading games (and, of course, writing games, but more about it later) – is the 

absolute ease with which the X point can be shifted left or right. This provides for a super-easy way to test all possible 

ML and non-ML based models for robustness with respect to all possible target-side “disturbances” (including both not 

yet available and old/obsolete information). 

This does also answer the following, rather existential, questions: when does it stop making sense to utilize historic 

statistics? At which point, essentially, do we need to stop trying to be smart? And, finally, when does ignorance become 

bliss? 

The Model 
At the core of any storage cluster is the formula 3 that generates both target utilizations and initiator rewards. Since it’d 

be difficult to come up with any representative subset of possible (or even plausible) utilization functions, the idea 

would be to bypass this step altogether and use instead what’s called raw data. Which in our case consists of straight 

target selection counts on a per-epoch basis. Let’s call them “target history” or just history. 

The tradeoff – the high(er) dimensionality of the model – is somewhat mitigated by limiting the history to a certain 

number of epochs, whereby everything outside the range is considered old, obsolete, just noise. The limit is 

configurable; in the pictures below, the history was limited to 100 epochs. 

In addition, the model must be able to exercise a variety of target-selection strategies, run arbitrary numbers of 

competing initiators (players) and targets, and provide consistent results across configuration changes. So, let’s see… 

This, for instance, is a benchmark of a storage cluster of 30 initiators and 30 targets:  

 
Known 

(partly old, obsolete) 

Unknown 

(most recently 

added/updated) 

Time 

https://mitpress.mit.edu/decision-making-under-uncertainty
https://github.com/hqr/gorann/blob/blogrclust/rcluster_test.go
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The Y-axis shows average read latencies measured in epochs (smaller is better), the X-axis: all 30 initiators grouped by 

the assigned (and labeled) target selection strategies that are summarized in the table below: 

Label Target Selection Strategy Comment 

R Random (uniform) selection.  

D1 
D1 and D2 use the actual target latency function (the one 
that is utilized by the targets), along with target selection 

history delayed by one and, respectively, two epochs. 

 

D2 See above.  

PI 

Similar to D1/D2, a PI initiator makes its selections by using 
the target’s own (and actual) latency function. In addition, 

the initiator has access to the entire target utilization 
history. Which is also why PI stands for Perfect Information. 

Perfect Information (PI) strategy is employed by 
initiators that “see” everything – except the 

current selections by other initiators. 

N1 Estimates latency using neural network #1. 

Both N1 and N2 initiators have access to the 

target utilization information delayed by two 
epochs (which makes them similar to D2 and 
slightly disadvantaged as far as D1). 

N2 Ditto, neural network #2. As above. 

A note in re N1 and N2: these two are the neural networks that showed the best results in training, and that were 

trained prior to running the benchmark. The prior phase consisted of training N1 and N2, along with another 28 (in this 

case) competing networks of different shapes, sizes, and hyperparameters. 

For details on this separate (pretraining) phase, please see my previous text titled Parallel optimization via 

multiple neural networks.  

Generally, vanilla CH clusters produce traffic patterns that must be expected to be a little spikey. Case in point: the next 

chart that compares the 50-point averaged runtime performances of the N2 with one of the “random” (R) initiators: 

 

Finally, to be done with this particular 30-by-30 benchmark – a chart that averages initiator latencies across the entire 

respective group: 

https://storagetarget.com/2017/06/06/parallel-optimization-via-multiple-neural-networks
https://storagetarget.com/2017/06/06/parallel-optimization-via-multiple-neural-networks
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Ultimately, this shows that N2 and PI are the glorified winners, with N2 having a slight edge. 

Losing to Randomness  
All things being equal, an increase in the service rate brings about a reduction in the target-side congestion. Is that… 

always a good thing? Well, a side effect that may be sounding like the proverbial “price to pay” is that it also de-values 

accumulated knowledge. And since at higher rates the aging of the target utilization history happens fast, and even 

faster when the target starts idling… well, visualize the overall value of a carefully assembled and preserved (statistical) 

past asymptotically approaching zero.  

For example: 

The following is a (60 initiators, 60 targets) benchmark that exemplifies the case when random (“dumb”) strategy 

outperforms the “smart” one, albeit only by 0.4%:  

 

However. When we remove the random (R) initiators altogether, and rerun the otherwise exactly the same 60-by-60 

cluster, the result becomes different: 

 

In summary: 

The three pictures above (and a few more that I don’t show, to keep it brief) – tell several stories. There is a story of a 

“confusion” that happens when a smart target selection strategy faces off with a random one – the latter cannot be 

learned! The story that it is maybe preferable to work with an old, possibly obsolete, largely irrelevant information – 

than to run against uniform randomness, intractable chaos, white noise… 

To be continued. 

service rate = 2.1 

service rate = 2.9 
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