
Scalable Object Storage
with Resource Reservations

and Dynamic Load Balancing

Alex Aizman
Nexenta Systems

The Setup

• Within Data Center
• Scale: 100+ nodes to unlimited
• Optimized for latency; no spikes at high utilization

– No “fat tails”

• Layer 1 of storage stack is object
– Storing and transporting immutable crypto-checksummed

KVT

More Requirements
• Copy-on-write, eventually consistent

– Put creates a new version

• Multiple replicas

– Multiple replicas on the wire?

• “Rampant Layering Violation”

• No Incast

– Mostly known as TCP Incast

• No/Minimized Convergence

– Multiple link-sharing flows “converge” to fair share

• Linearly scalable and load balanced at all times

– Uniform distribution != balanced distribution

New Storage Protocol Required

The Claim

Edge-driven
resource allocation

Unstructured
Distributed

Namespace
Federated

Clustered

(striped/sharded)

DLM

MDS

Consistent

Hash

(Scale-Out +

Load Balancing)

Distributed clusters

• pNFS(*)

• GPFS

• Lustre

• Swift

• GFS, HDFS

A

C

P
• Maglev • Ceph

?

Lo
ca

ti
o

n
 t

ra
ck

in
g

(*) Schemes for Fast Transmission of Flows in Data Center Networks
(**) Analysis of DCTCP: Stability, Convergence, and Fairness

Minimizing
flow latency

Deadline-agnostic
Schemes

DCTCP

Deadline-aware
Schemes

Flow
Scheduling

D3 PDQ D2TCP Replicast™

Switch
Support

DAQ

https://web.njit.edu/~rojasces/publications/royazisurvtu15.pdf
https://web.njit.edu/~rojasces/publications/royazisurvtu15.pdf
https://web.njit.edu/~rojasces/publications/royazisurvtu15.pdf
http://web.stanford.edu/~balaji/papers/11analysisof.pdf

• Reserved bandwidth 100% utilized
- Impact of one connection terminating?
- Zero (or minimal) competition between flows

• Compare with SJF/EDF/PDQ..

Congestion: give control to the target!

Motivations: Transport
L5 over TCP Replicast

Performance Throughput + fare-share Completion time

General purpose Yes No

Multiple replicas on the wire Yes No

Mature and stable L4 Yes No

(TCP) Incast Yes No

Congestion control (L2) + L4 L2 + Replicast

Retry L4 Replicast

DCB traffic class Depending on the app Yes

Motivations: Storage
Replicast

Built-in deduplication Yes

Consistent hashing +
Inline load balancing

Yes

Target Resource reservation
 (Network, Disk)

Yes
(Yes, Yes)

Replicast: edge-based load balancer

Tradeoffs – Protocol Variations

• Variations(*):

1) Multicast control
plane + unicast
delivery

2) Choosy Initiator

3) The Better
Protocol

- and more

(*) https://storagetarget.com

• There is always a cost and associated tradeoffs
• Replicast: all designated targets must share the timeslot

https://storagetarget.com/2016/03/20/choosy-initiator-2/
https://storagetarget.com/2016/05/17/the-better-protocol-part-i/
https://storagetarget.com/2016/05/17/the-better-protocol-part-i/
https://storagetarget.com/

Protocol Simulation
• Replicast is designed for 1000s of nodes

• SURGE framework @https://github.com/hqr/surge

• Each node is a goroutine; fully owns its configured resources

• Any-to-any connect via Go channels

• Time modeling

• Same-size payload chunks indexed by a cryptohash of their content

• And consistently hashed to: a) groups (Replicast), b) targets (unicast)

• Non-blocking no-drop network core that connects all 10GbE ports

• Flow isolation: protected VLAN

• Transmission errors are sufficiently rare and therefore not modeled

• Reads are modeled but remain out of scope (and space)

https://github.com/hqr/surge
https://github.com/hqr/surge
https://github.com/hqr/surge
https://github.com/hqr/surge
https://github.com/hqr/surge
https://storagetarget.com/2016/02/11/surge-performance-modeling-for-distributed-systems/

The “fair comparison” dilemma

• Unicast Consistent Hash, Captive Congestion
Point
– Consistent hashing for target selection

– Unicast UDP for both control and data

– Idealized bandwidth reservations: RATE INIT and RATE
SET

– Immediate start (as opposed to TCP slow start)

– 3x lower connection-setup overhead vs. Replicast

Results

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

400 1,000

80,700

176,000

58,400

108,900

73,400

127,900

ch
u

n
ks

/s

put throughput: 90x90, 128K

replicast-m

uch-ccp

replicast-h

Replicast: reservation conflicts

Chunk Put interarrival time 𝝀
Poisson

probability

16K 11us 0.09 46.7%

128K 50us 0.02 13%

1MB 500us 0.002 1.39%

16K chunks

Next Steps

• Optimizations for small chunks

• Optimizations for concurrent gets and puts

• Optimal ratios of initiators to targets

• Optimal sizing of the load-balancing groups

• Load balancing proxies

• Kernel bypass (DPDK)

• Bit Index Explicit Replication (BIER)
– Stateless multi-point replication

Instead of conclusions: Guiding Principles

• Location independence: both chunks and MD

• No SPOF (no single-MDS, at least on this level)

• Inline load balancing | Inline global dedup

• Storage-level end-to-end resource reservation

• 100% bandwidth utilization

– During the reserved timeslot

• Single copy on the wire

– If possible

• Close-to-open, ACID/transactional and other
types of consistency – by upper layers

• and more

Credits: Caitlin Bestler

Thank You

