Scalable Object Storage

with Resource Reservations
and Dynamic Load Balancing

Alex Aizman
Nexenta Systems




The Setup

Storage Initiators
(with colocated
applications)

Internal
Storage
Network

External
Network

[End Clients

e Within Data Center
e Scale: 100+ nodes to unlimited

* Optimized for latency; no spikes at high utilization
— No “fat tails”

* Layer 1 of storage stack is object

— Storing and transporting immutable crypto-checksummed
KVT

Storage Initiators
(application layer

gateways)

Storage
Targets




More Requirements
Copy-on-write, eventually consistent

— Put creates a new version
Multiple replicas

— Multiple replicas on the wire?
“Rampant Layering Violation”

No Incast
— Mostly known as TCP Incast

No/Minimized Convergence

— Multiple link-sharing flows “converge” to fair share

Linearly scalable and load balanced at all times

— Uniform distribution != balanced distribution



The Claim

Storage Initiators
(with colocated
applications)

S Internal
_ External Stora.ge I.nltlators ot Storage
End Clients (application layer orage
Network Targets
Network
gateways) W

/\

Edge-drive‘
resource allocati

New Storage Protocol R




Distributed clusters

VR

Unstructured
Distributed

~

N

Namespace
Federated

N—

c
(%]
(1] >
-
(1]

=.
T o
o

[ Location tracking ) (8¢

—
(%]
-+

* GPFS

~— | Lustre

—||* PNFS® e GFS, HDFS

Consistent

Qe o Swift|l* Ceph |/* Maglev

A 7~ N\

(Scale-Out +
Load Balancing) ?



DCN: transmission of short-lived flows

Minimizing
flow latency

I 1
| |
Deadline-aware
Deadline-agnostic Schemes
Schemes
| |

Flow Switch
Scheduling Support
DCTCP l D3 l PDQ Il D2TCP [ Replicast™

(b) DCTCP (g = 0.07) (c) DCTCP (g = 0.025) (d) DCTCP (g = 0.005)
' ' ' : ' Connection
setup and
PR termination,
both
T iy 12 RE T Tinuﬂ 2

(*) Schemes for Fast Transmission of Flows in Data Center Networks
(**) Analysis of DCTCP: Stability, Convergence, and Fairness



https://web.njit.edu/~rojasces/publications/royazisurvtu15.pdf
https://web.njit.edu/~rojasces/publications/royazisurvtu15.pdf
https://web.njit.edu/~rojasces/publications/royazisurvtu15.pdf
http://web.stanford.edu/~balaji/papers/11analysisof.pdf

Congestion: give control to the target!

Rate Non-blocking core
Storage Initiators shaping no-drop 802.1 DCB
(with colocated
applications)

Captive
Congestion
Point

e Reserved bandwidth 100% utilized

- Impact of one connection terminating?
- Zero (or minimal) competition between flows

 Compare with SIF/EDF/PDQ..



Motivations: Transport

L5 over TCP Replicast
Performance Throughput + fare-share Completion time
General purpose Yes No
Multiple replicas on the wire Yes No
Mature and stable L4 Yes No
(TCP) Incast Yes No
Congestion control (L2) + L4 L2 + Replicast
Retry / L4 Replicast
DCB traffic class / Depending on the app Yes

Modern wired
networks have
exceedingly low
bit error rates

Motivations: Storage

Replicast
Built-in deduplication Yes
Consistent hashing + Yes
Inline load balancing
Target Resource reservation Yes
(Network, Disk) (Yes, Yes)




Replicast: edge-based load balancer

[InitiatnrA [ Initiator B ] Initiator C

Server X
from negotiating group Y

]

PUT-REQ (chunk 0x8felb)

JU N BT

- PUT-REQ (chunk 0xa428c)
- BID (start-time=Now + 120us)

- PUT-ACCEPT (chunk 0x8felb)

- PUT-ACCEPT (chunk 0xa428c, cancel) ]

BID [start-tlmE-Nuw + 120us)

Data
Packets

1| e (chunk oxsrers) ’

8.9Gbps

. PUT-REQ (chunk 0x3b72e)




Tradeoffs — Protocol Variations

 There is always a cost and associated tradeoffs

* Replicast: all designated targets must share the timeslot

e Variations(*):

1) Multicast control
plane + unicast

delivery
2) Choosy Initiator

3) The Better
Protocol

- and more

(*) https://storagetarget.com

[ Initiator A ] [ Initiator B ]

Target X

€

A.reserve() J
X.reservation(time=Now+1.1ms)
B.reserve
() N|

” X.reservation(time=Now + 2.3ms)

B.cancel()
ﬁ

A.cancel()

B.reserve()
” Xreservation(time=Now)

Data flow B => X

Data
at
reserved
8.9Gbps


https://storagetarget.com/2016/03/20/choosy-initiator-2/
https://storagetarget.com/2016/05/17/the-better-protocol-part-i/
https://storagetarget.com/2016/05/17/the-better-protocol-part-i/
https://storagetarget.com/

Protocol Simulation

Replicast is designed for 1000s of nodes
SURGE framework @https://github.com/har/surge
Each node is a goroutine; fully owns its configured resources

Any-to-any connect via Go channels

y
Time modeling

NOW NOW +1. 819|.Ls
o

Same-size payload chunks indexed by a cryptohash of their content
And consistently hashed to: a) groups (Replicast), b) targets (unicast)
Non-blocking no-drop network core that connects all 10GbE ports
Flow isolation: protected VLAN

Transmission errors are sufficiently rare and therefore not modeled
Reads are modeled but remain out of scope (and space)


https://github.com/hqr/surge
https://github.com/hqr/surge
https://github.com/hqr/surge
https://github.com/hqr/surge
https://github.com/hqr/surge
https://storagetarget.com/2016/02/11/surge-performance-modeling-for-distributed-systems/

The “fair comparison” dilemma

CHUNK
PUT
REQUEST

DISK
WRITE
COMPLETION

REPLICA
PUT
ACK

* Unicast Consistent Hash, Captive Congestion
Point

— Consistent hashing for target selection
— Unicast UDP for both control and data

— |dealized bandwidth reservations: RATE INIT and RATE
SET

— Immediate start (as opposed to TCP slow start)
— 3x lower connection-setup overhead vs. Replicast



put throughput: 90x90, 128K

Results

180,000 -

160,000 - 127,900

140,000 - ,900

120,000 - M replicast-m
L 80,700
E 100,000 - 73,400 B uch-ccp
< 8,400
S 80,000 W replicast-h

60,000 -

40,000 -

20,000 -

0
400 1,000

TABLE 2. 90 INITIATORS. 90 TARGETS. 400MB/S DRIVES

Chunk uch-ccp replicast-m replicast-h
536.950 c/s 635.750c/s 525.100 c/s
16K 70.6% 83.6% 69 0%
164.7us 139 Ous 168 4us
58.400 c/s 80.700 c/s 73.400 c/s
128K 66.4% 90.6% 83 6%
1401 .7us 1039 8us 1132 6us
6.733 ¢/s 8.067 c/s 8.000 c/s
1M 69. 6% 85.6% 84 9%
10260 2us 9210.8us 8945 9us




Replicast: reservation conflicts

_ _ _ Poisson
Put interarrival time A probability
16K 11us 0.09 46.7%
128K 50us 0.02 13%
1MB 500us 0.002 1.39%
1.000.000 / 16K chunks |
so0000 | e
¥ 600.000 B replicast-h
E 400,000 -
200,000 -

0

e
-
=
=1
-
-
=



Next Steps

Optimizations for small chunks
Optimizations for concurrent gets and puts
Optimal ratios of initiators to targets
Optimal sizing of the load-balancing groups
Load balancing proxies

Kernel bypass (DPDK)

Bit Index Explicit Replication (BIER)
— Stateless multi-point replication



Instead of conclusions: Guiding Principles

Location independence: both chunks and MD
No SPOF (no single-MDS, at least on this level)
Inline load balancing | Inline global dedup

Storage-level end-to-end resource reservation

100% bandwidth utilization
— During the reserved timeslot

Single copy on the wire
— If possible

Close-to-open, ACID/transactional and other
types of consistency — by upper layers

and more



Credits: Caitlin Bestler

Thank You



