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The Setup
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e Within Data Center
e Scale: 100+ nodes to unlimited

* Optimized for latency; no spikes at high utilization
— No “fat tails”

* Layer 1 of storage stack is object

— Storing and transporting immutable crypto-checksummed
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More Requirements
Copy-on-write, eventually consistent

— Put creates a new version
Multiple replicas

— Multiple replicas on the wire?
“Rampant Layering Violation”

No Incast
— Mostly known as TCP Incast

No/Minimized Convergence

— Multiple link-sharing flows “converge” to fair share

Linearly scalable and load balanced at all times

— Uniform distribution != balanced distribution



The Claim
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Distributed clusters
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DCN: transmission of short-lived flows

Minimizing
flow latency
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Flow Switch
Scheduling Support
DCTCP l D3 l PDQ Il D2TCP [ Replicast™

(b) DCTCP (g = 0.07) (c) DCTCP (g = 0.025) (d) DCTCP (g = 0.005)
' ' ' : ' Connection
setup and
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(*) Schemes for Fast Transmission of Flows in Data Center Networks
(**) Analysis of DCTCP: Stability, Convergence, and Fairness



https://web.njit.edu/~rojasces/publications/royazisurvtu15.pdf
https://web.njit.edu/~rojasces/publications/royazisurvtu15.pdf
https://web.njit.edu/~rojasces/publications/royazisurvtu15.pdf
http://web.stanford.edu/~balaji/papers/11analysisof.pdf

Congestion: give control to the target!

Rate Non-blocking core
Storage Initiators shaping no-drop 802.1 DCB
(with colocated
applications)

Captive
Congestion
Point

e Reserved bandwidth 100% utilized

- Impact of one connection terminating?
- Zero (or minimal) competition between flows

 Compare with SIF/EDF/PDQ..



Motivations: Transport

L5 over TCP Replicast
Performance Throughput + fare-share Completion time
General purpose Yes No
Multiple replicas on the wire Yes No
Mature and stable L4 Yes No
(TCP) Incast Yes No
Congestion control (L2) + L4 L2 + Replicast
Retry / L4 Replicast
DCB traffic class / Depending on the app Yes

Modern wired
networks have
exceedingly low
bit error rates

Motivations: Storage

Replicast
Built-in deduplication Yes
Consistent hashing + Yes
Inline load balancing
Target Resource reservation Yes
(Network, Disk) (Yes, Yes)




Replicast: edge-based load balancer
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Tradeoffs — Protocol Variations

 There is always a cost and associated tradeoffs

* Replicast: all designated targets must share the timeslot

e Variations(*):

1) Multicast control
plane + unicast

delivery
2) Choosy Initiator

3) The Better
Protocol

- and more

(*) https://storagetarget.com
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https://storagetarget.com/2016/03/20/choosy-initiator-2/
https://storagetarget.com/2016/05/17/the-better-protocol-part-i/
https://storagetarget.com/2016/05/17/the-better-protocol-part-i/
https://storagetarget.com/

Protocol Simulation

Replicast is designed for 1000s of nodes
SURGE framework @https://github.com/har/surge
Each node is a goroutine; fully owns its configured resources

Any-to-any connect via Go channels

y
Time modeling

NOW NOW +1. 819|.Ls
o

Same-size payload chunks indexed by a cryptohash of their content
And consistently hashed to: a) groups (Replicast), b) targets (unicast)
Non-blocking no-drop network core that connects all 10GbE ports
Flow isolation: protected VLAN

Transmission errors are sufficiently rare and therefore not modeled
Reads are modeled but remain out of scope (and space)


https://github.com/hqr/surge
https://github.com/hqr/surge
https://github.com/hqr/surge
https://github.com/hqr/surge
https://github.com/hqr/surge
https://storagetarget.com/2016/02/11/surge-performance-modeling-for-distributed-systems/

The “fair comparison” dilemma

CHUNK
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* Unicast Consistent Hash, Captive Congestion
Point

— Consistent hashing for target selection
— Unicast UDP for both control and data

— |dealized bandwidth reservations: RATE INIT and RATE
SET

— Immediate start (as opposed to TCP slow start)
— 3x lower connection-setup overhead vs. Replicast



put throughput: 90x90, 128K

Results
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TABLE 2. 90 INITIATORS. 90 TARGETS. 400MB/S DRIVES

Chunk uch-ccp replicast-m replicast-h
536.950 c/s 635.750c/s 525.100 c/s
16K 70.6% 83.6% 69 0%
164.7us 139 Ous 168 4us
58.400 c/s 80.700 c/s 73.400 c/s
128K 66.4% 90.6% 83 6%
1401 .7us 1039 8us 1132 6us
6.733 ¢/s 8.067 c/s 8.000 c/s
1M 69. 6% 85.6% 84 9%
10260 2us 9210.8us 8945 9us




Replicast: reservation conflicts

_ _ _ Poisson
Put interarrival time A probability
16K 11us 0.09 46.7%
128K 50us 0.02 13%
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Next Steps

Optimizations for small chunks
Optimizations for concurrent gets and puts
Optimal ratios of initiators to targets
Optimal sizing of the load-balancing groups
Load balancing proxies

Kernel bypass (DPDK)

Bit Index Explicit Replication (BIER)
— Stateless multi-point replication



Instead of conclusions: Guiding Principles

Location independence: both chunks and MD
No SPOF (no single-MDS, at least on this level)
Inline load balancing | Inline global dedup

Storage-level end-to-end resource reservation

100% bandwidth utilization
— During the reserved timeslot

Single copy on the wire
— If possible

Close-to-open, ACID/transactional and other
types of consistency — by upper layers

and more



Credits: Caitlin Bestler
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